1. Introduction

This paper examines a selection of cases in which a matrix verb shows agreement with the object of an embedded predicate. As this agreement appears to cross a clause boundary of some sort, we follow the literature in calling this long distance agreement [LDA], although strictly speaking our analysis will ultimately be that the agreement itself is quite local. Examples (1)a-b illustrate the phenomenon from the Chukotko-Kamchatkan language Itelmen, drawn from our own fieldwork, and from the Nakh-Daghestanian language Tsez, as presented in Polinsky and Potsdam (2001) [hereafter P&P], respectively.

(1) a. t’ontxanokn sopnes
1SG-forget-3PL.OBJ all close-INF
‘I forgot to close all the windows’ (S6:6-7)

b. enir maalu ba’ru
mother boy bread.III.ABS ate IV III-know
‘The mother knows [(that) the boy ate the bread.]’

Note that LDA in the Itelmen example forces an interpretation in which the underlying
embedded object takes scope over the matrix predicate \textit{forget}. That is, the Itelmen example is felicitous only if all windows remain open, and is incompatible with a scenario in which I closed some, but not all, of the windows (contrast the English paraphrase, which is ambiguous, or vague, on this point).

The observation about scope in Itelmen is of interest for two reasons. First, regarding scope, LDA in Itelmen contrasts sharply with other examples of LDA discussed in the recent literature, including Tsez and the Algonquian language Passamaquoddy (Bruening 2001). In these languages, the embedded object remains in the embedded clause throughout the derivation, and cannot enter into scope relations with elements in the matrix clause. Second, the anti-reconstruction effect in Itelmen is suspiciously reminiscent of anti-reconstruction effects in German and Japanese restructuring configurations, as discussed by Wurmbrand (this volume).

We therefore propose a unified account for the Itelmen LDA construction and the anti-reconstruction effects in German and Japanese. The basic claim is that morphological object agreement is to accusative case licensing as subject agreement is to nominative case-licensing (in essence, head- versus dependent-marking of a more abstract licensing configuration). If this is correct, then our analysis lends empirical support to this assumption.

In developing our analysis, we argue for the following points: (i) the operations MOVE and AGREE are independent operations (not parasitic upon each other), (ii) in addition to inherent phases (\(vP, CP\)), complements to lexical verbs are \textit{induced} phases, (iii) locality domains expressed by phases are not absolute, specifically, A-movement may cross boundaries which are impenetrable for AGREE, and (iv) AGREE is phase-based and must be with an LF-phasemate (A-reconstruction is phase-bound).

Following our analysis of Itelmen, we compare and contrast this language with Tsez. The key difference between Itelmen and Tsez, we argue, is that LDA in Tsez is not restricted to restructuring predicates, as it is in Itelmen. While in Itelmen, the embedded object establishes a case/agreement relation with a head in the matrix predicate, the embedded object in Tsez checks case and agreement inside the embedded clause. The account we provide allows for further agreement in the higher predicate in Tsez, but only if the agreeing phrase occurs in the high periphery of the embedded clause, essentially as in the analyses in Polinsky and Potsdam (2001) and Bruening (2001). Finally, in addition to predicting the differences between Itelmen and Tsez, our analysis also captures certain similarities between the two types of LDA.

2. Anti-reconstruction

The starting point for our analysis of LDA is the analysis of anti-reconstruction effects in German and Japanese presented in Wurmbrand (this volume) which we summarize briefly in this section, referring the reader to that paper for further discussion, including motivation of assumptions which will likely seem quite \textit{ad hoc} here. The facts of interest are minimal pairs such as the following. In each pair ((2) is from German, (3) from Japanese; for references see Wurmbrand this volume), the (b) example allows an interpretation which is unavailable in the (a) example. More specifically, the interpretation that is absent in the (a) examples is the one in which the object is interpreted in its base position, i.e., in the scope of the matrix predicate.
LDA, restructuring and anti-reconstruction

(2) a. weil alle Fenster zu schließen vergessen wurden²
 since all windows (NOM) to close forgotten were
 ‘since they forgot to close all windows’ \[
 \text{\textbullet} \text{forget; *}\text{forget} \text{\textbullet}
 \]

 b. weil alle Fenster zu schließen vergessen wurde
 since all windows (ACC) to close forgotten was
 ‘since they forgot to close all windows’ \[
 \text{\textbullet} \text{forget} \text{\textbullet}
 \]

(3) a. John-ga migime-dake-ga tumu-re-ru
 John-NOM right.eye-only-NOM close-can-PRES
 ‘John can close only his right eye’ \[
 \text{\textbullet} \text{can; *}\text{can} \text{\textbullet}
 \]

 b. John-ga migime-dake-o tumu-re-ru
 John-NOM right.eye-only-ACC close-can-PRES
 ‘John can close only his right eye’ \[
 \text{\textbullet} \text{can} \text{\textbullet}
 \]

The empirical generalization that Wurmbrand puts forward is that the embedded object cannot take scope in the embedded clause when that object enters into a case/agreement relation in the matrix clause. Example (2)a is a “long passive” construction, in which only the matrix verb undergoes passive, but the case and agreement properties of the embedded object are affected—it agrees with the matrix auxiliary. Long passive is only possible in restructuring contexts. Example (2)b illustrates the option of treating the infinitive as a non-restructuring complement, an option available to all complements of lexical restructuring verbs (see Wurmbrand 2001b, to appear). The Japanese examples are similar: in (3)a, the embedded object bears nominative case, a possibility restricted to the objects of stative verbs, in this case matrix (affixal) verb -(ra)re ‘can’.³ The generalization is not limited to long passive in German, but holds of restructuring configurations generally, as illustrated in (4).

(4) weil er alle Fenster vergessen hat [tOBJ zu schließen]
 since he all windows(ACC) forgotten has [tOBJ to close]
 ‘since he forgot to close all (the) windows’ \[
 \text{\textbullet} \text{forget; *}\text{forget} \text{\textbullet}
 \]

The analysis of restructuring infinitives [RIIs] we will assume is illustrated in (5) (see Wurmbrand 2001b for an extended defense of this position and contrast with alternatives). RIIs are represented as bare (to-)VPs, lacking CP, TP, vP. Note that this last

² These examples involve the “long passive” construction (see text below). Some speakers have indicated that they find this construction “marked” and have on that basis questioned any conclusions which arise from properties of such a construction. We note that of approximately 25 speakers consulted, even those speakers who claim to find the construction itself marked nevertheless find the scope contrast to be sharp, in some cases remarkably so. The fact that judgments are uniform on a “marked” construction constitute in our view a strong prima facie argument that the scope properties must follow from properties of grammar and not from extra-linguistic considerations. Note that the pair in (2) contrasts overtly only in the final segment of the auxiliary.

³ Hoshi (1999) and Saito (2000) argue for a complex predicate analysis of examples like (3)a, (cf. treatments of verb clustering in Germanic originating with Steedman 1985). Such analyses are less plausible for German and Itelmen in which the two members of the putative complex predicate need not be adjacent (as in (1)a, (4), and VP-fronting examples in Wurmbrand, this volume).
projection is assumed to be the locus of accusative case assignment.

Assuming that RIs lack a structural case assigner/position immediately accounts for the case dependencies noted above. If the matrix predicate is an accusative assigner, the embedded object receives accusative ((5)a); if the matrix predicate lacks an accusative assigner, the embedded object receives nominative ((5)b). Similarly, in Japanese, stative matrix predicates assign nominative to the embedded object (we abstract away here from the question of whether nominative is assigned by T or v in these constructions; see Tada 1992, 1993 vs. Koizumi 1995), whereas non-stative predicates assign accusative.

(5)

(a) Active RI: (4) [w/o extraposition]

(b) Passive RI: (2)a

Since in a true restructuring configuration (active or passive) the embedded object must be interpreted above the matrix predicate, we conclude that at some point in the derivation, the object must undergo movement to the matrix predicate. Note that lexical restructuring verbs are always compatible with a non-restructuring infinitival complement, one that contains at least a vP projection and thus accusative case. This yields the misleading appearance that operations such as long passive are optional. Rather, we assume that examples such as (2)b (i.e., cases that lack any case/agreement dependency between the embedded object and the matrix predicate) instantiate (impersonal) passive constructions in which the matrix verb combines with a non-restructuring infinitive [NRI] (on the RI/NRI distinction, see Wurmbrand 2001b).

There are, then, various questions to answer: i) what triggers the movement in (5); ii) why is this movement obligatory; and iii) given that reconstruction is generally available in German and Japanese, why is it impossible in exactly these cases? In the following sections, we summarize the account of these anti-reconstruction effects presented in Wurmbrand (this volume).
2.1. Agree

Wurmbrand (2001a) provides an empirical argument that the AGREE relation is sufficient for the licensing of nominative case and subject agreement, at least in certain contexts. The shape of the argument is illustrated in (6).

(6) a. PF and LF b. LF c. AGREE

The first observation is that among the verbs in German which take a dative and a nominative argument, one class of psych predicates displays an unaccusative syntax as in (6). The surface nominative, which triggers subject agreement on the finite verb or auxiliary (i.e., T'), originates VP-internally, in a position that can be shown to be beneath the base position of the dative (via standard hierarchy diagnostics such as variable binding). The next observation is that VP-topicalization is possible in German, and, as in English, induces a scope freezing effect (see Barss 1986, Sauerland 1998). That is, an element contained inside a fronted VP may not enter into scope relations with an element outside the VP. Accounts for scope freezing effects must assume that reconstruction into or (LF) movement out of a (reconstructed) topicalized phrase is impossible.

Now, if nominative case/subject agreement checking would require movement to Spec,Tp (by or at LF), it should be impossible to front the lower VP in (6)a, leaving the dative DP behind. Scope freezing would trap the lower DP inside the (reconstructed) VP at LF, and it would not be able to receive nominative case. (Relaxing the ban on covert movement out of a topicalized VP would predict that the nominative DP could take scope over the dative, as it can when VP-fronting is not at issue). As it turns out, fronting is indeed possible and the scope freezing generalization is respected (cf. (7); see Wurmbrand 2001a for additional data and important controls).

(7) a. ?[Jeder Film gefallen]vp sollte mindestens einem Kritiker [every film,nom please]vp should at.least one critic,dat
 ‘Each movie should please at least one critic.’
 \square \Rightarrow \square; \star \Rightarrow \square

b. ?[Jede Übung gelungen]vp ist zumindesten einem Kind
 [every exercise,nom managed]vp is at.least one child,dat
 ‘At least one child managed (to do) every exercise.’
 \square \Rightarrow \square; \star \Rightarrow \square

\footnote{We do not distinguish here between feature-movement and AGREE. Our results may thus be recast as arguing that feature-movement and (possibly covert) phrasal-movement obey different locality conditions (see also Pesetsky 2000).}
These facts establish that a DP may receive nominative case from and trigger agreement with T', despite the fact that this DP is overtly contained in a (fronted) VP, from which we know that it cannot escape at LF. Thus, case/agreement checking can be achieved without movement, that is, via AGREE as in (6)c.\(^5\)

2.2. *Eppur si muove*

In light of the results of the previous section, the anti-reconstruction cases in (2) are surprising. The previous section establishes that AGREE may obtain without (overt or covert) movement. Why then should the embedded object be forced to move in (2)a, let alone be prohibited from undergoing reconstruction? The answer offered in Wurmbrand (this volume) is that AGREE is restricted to a local domain, namely, a single phase (see also Bruening 2001), whereas MOVE can escape a phase if such movement feeds AGREE at its landing site. The examples in which AGREE in situ (without movement) is possible (cf. (6)) all involve agreement inside a single (unaccusative) clause: T' agrees with the object of the local VP. Such local agreement does not require movement (nor does it exclude movement) and thus has no particular effects on scope. In order that movement be forced in the restructuring examples, it must be that there is a phase boundary between the matrix case assigner and the embedded object position.

Side-by-side comparison of the environment which allowed AGREE in situ without move in German ((8)a) with the passive restructuring case ((8)b) reveals the identity of this phase-boundary. The two configurations are identical with the only difference that the former involves a simple VP whereas the latter involves a complex VP. Nevertheless, they differ crucially in the scope properties: the nominative DP can take scope in its base position in (8)a, but not in (8)b. The infinitival VP is thus the most logical candidate for the phase boundary. (Note that the infinitival VP is a phase boundary for the AGREE relation only, A-movement may escape the phase; Wurmbrand provides evidence that this happens in a non-successive-cyclic manner, see section 3.3 of her paper).

(8) a. Simple predicate

\[
\begin{array}{c}
\text{TP} \\
\text{Ø} \\
\text{VP} \\
\text{T'} \\
\text{IO-DAT} \\
\text{DO-NOM} \\
\text{V'} \\
\text{AGREE} \\
\text{OK} \\
\text{LF-POSITION}
\end{array}
\]

b. Restructuring infinitive

\[
\begin{array}{c}
\text{TP} \\
\text{NOM} \\
\text{VP} \\
\text{T'} \\
\text{MOVE} \\
\text{InfP/VP} \\
\text{V'} \\
\text{t_{OBJ}} \\
\text{V'} \\
\text{*LF POSITION}
\end{array}
\]

\(^5\) As Wurmbrand notes, the same reasoning also leads to the conclusion that the EPP does not hold in German at any level of representation, i.e., there is no requirement that Spec,TP be filled.
Once it is recognized that the infinitival VP is a phase boundary for AGREE, the anti-reconstruction effects follow directly if we assume that AGREE respects a phasemate condition at LF. If the object reconstructs into the lower phase in (8)b, it would be too far away again from the matrix T˚ to establish an AGREE relation at LF.

2.3. Relativized Phases

To summarize, then, the account of the German and Japanese restructuring examples is as shown in (9). The active RI is reminiscent of a raising-to-object construction and the passive of raising-to-subject.

(9) a. Active RI b. Passive RI (= (5a, b))

RIs are (to)-VP complements, lacking functional projections above the VP, and in particular lacking the vP projection responsible for accusative case licensing. The object must therefore enter into case/agreement relations with the appropriate functional head in the matrix domain (v in an active clause, T in a passive or unaccusative). For these reasons, the case of the embedded object is dependent on the voice properties of the matrix clause—whence long passive. The scope facts demonstrate that the arrows in (9) represent movement, not AGREE. Under the assumption that phases are boundaries for AGREE but not necessarily for MOVE, the infinitival VP must be a phase boundary here—if it were not, movement would not be forced and there should not be an anti-reconstruction effect.

Note that while the infinitival VP must be a phase boundary on this account, it is crucial that VP is not always a phase boundary. In (8)a, the local case, AGREE may apply across a VP boundary when that VP is the complement of a modal or an auxiliary. Our proposal, then, is stated as the induced phase generalization in (10).
The (verbal) complement to a lexical verb constitutes a phase (for AGREE), regardless of its structural size.\(^6\)

While CP and vP are inherent phases, VP constitutes a phase (by (10)), when it is the complement of a lexical verb (as in lexical restructuring configurations), but not when it is the complement of a functional head, such as TP or vP (i.e., in simple clauses). We will refer to the VP complements of lexical verbs as \textit{induced} phases. We do not, at this point, understand why (10) should hold. However, recognizing that it does hold makes the correct cut in the analysis of anti-reconstruction effects as demonstrated above.

3. Object Agreement and Restructuring

In the previous section, we have provided an account of the distribution of agreement and nominative case in German long passive and long unaccusative constructions. Two salient aspects of that account were (i) NOM/agr in the matrix clause is fed by a step of long A-movement, and (ii) this movement can not reconstruct. Movement is required since the lower VP is an (induced) phase boundary, and the anti-reconstruction effect is a direct consequence of the LF-phasemate condition on agreement. The account should extend to accusative case assignment in an active restructuring configuration as in (5a), and the appearance of the anti-reconstruction effect in restructuring examples such as (4) suggests that it does. The active cases are complicated, though, by the fact that lexical restructuring verbs are typically also compatible with non-restructuring infinitival complements, which provide an alternate source for accusative case.

This complication can be avoided by looking at LDA. We have suggested that accusative case and morphological object agreement reflect the same abstract relationship, i.e., feature checking/licensing with \textit{v}. The analysis discussed above thus makes a set of interrelated predictions. First, apparent “cross-clausal” object agreement should be possible in restructuring configurations. This would constitute exactly the same structural configuration as (9)a. Second, when agreement is manifest, anti-reconstruction effects should emerge, just as they do in German and Japanese.

The complement of a lexical restructuring verb should constitute an induced phase, and hence long-distance object agreement should not be possible without prior movement (possibly covert, as in German). Such movement will be obligatory (since the object is not licensed in the RI) and will not be able to reconstruct, as it must remain a phasemate with the higher \textit{v} at LF. Observationally, the obligatory nature of the movement may be obscured in the same way that the obligatory case relation is obscured in German, namely, by the possibility for a lexical restructuring verb to combine with a bigger, non-restructuring infinitive. However, in a language with morphological object

\(^6\) The qualification “verbal” is included here simply to remain agnostic as to whether a DP complement to a verb constitutes a phase boundary. We will return to truncated clausal complements in section 4. It is tempting to suggest an alternative formulation, for example, that the top of the extended projection (cf. Grimshaw 1991) of a given lexical verb constitutes a phase. This too, would have the desired effect that a VP is a phase when it is selected by a lexical head, but not when it is selected by a functional head. It is not clear to us that this will work for example, for passive, hence we keep to the formulation in the text. Note also that it is only \textit{induced} phases (i.e., those defined by (10)) for which we have evidence that AGREE obeys stricter locality conditions than MOVE. We have not explored the significance of this observation.
agreement, the combination with an NRI should correlate with the absence of movement and hence the absence of morphological agreement in the higher clause. Thus, we predict specifically that while morphological LDA in restructuring contexts may appear optional, when it occurs, it will correlate with an anti-reconstruction effect.

We have worked to test this prediction against data from Itelmen, a non-configurational language with morphological object agreement. The results (which should still be considered somewhat preliminary) are strikingly consistent with this prediction. We have given a key example already in (1)a, but in the following section we will quickly review properties of Itelmen and the controls used to establish that the example does indeed represent confirmation of the prediction.

3.1. Long Distance Object Agreement in Itelmen

Itelmen is a Chukotko-Kamchatsk language spoken on the Kamchatka peninsula, in the Russian Far East. Finite verbs in Itelmen agree obligatorily with the subject; transitive verbs also agree obligatorily with an object (direct or indirect, see Bobaljik and Wurmbrand 2002 for a discussion of Itelmen agreement facts). The examples in (11) illustrate morphological agreement (at the suffix position) with the direct object in Itelmen.

(11)

<table>
<thead>
<tr>
<th>(11)</th>
<th>kma</th>
<th>t’-lcq-u-in</th>
<th>b. q-lcq-u-um kma</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1SG-see</td>
<td>2SG.OBJ</td>
<td>2.IRR</td>
</tr>
<tr>
<td>‘I saw you.’</td>
<td>‘Look at me!’</td>
<td>(S1:71,75)</td>
<td></td>
</tr>
</tbody>
</table>

The examples in (12)a-b show that matrix verbs may agree with the object of an embedded, non-finite verb. The contrast between (12)b and (12)c suggests that LDA is optional, unlike local object agreement (see above). When the matrix verb does not agree with an embedded object, the verb is morphologically intransitive.

(12)

| (12) | t’-tu-u-z-in | b. lcq-u-a |-i- |
|------|------------|----------|
| 1SG.SUBJ | unable-PRES-2SG.OBJ | see-FUTURE-INF |
| ‘I am unable [to see you.]’ | (S3:19) |
| na | ntxa-um=n-h | kma | je-na-s |
| he | forget-1SG.OBJ=3.CL | me | meet-INF |
| ‘He forgot to meet me.’ | (S6:8) |
| na | netxa-in | kma | je-na-s |
| he | forget-3SG.SUBJ (INTRANS) | me | meet-INF |
| ‘He forgot to meet me.’ | (S6:9) |

Like local agreement, LDA may target either the direct or indirect object of the embedded clause. This is illustrated in (13).

7 Thus the verb does not appear to agree with the embedded clause, as it does in Tsez, see P&P.
(13) a. ūntxa- ūm=nū kōma-nk nōnē i zūl-es. forget-1SG.OBJ=3.CL me-DAT fish INTERJ give-INF
 ‘He forgot to give me (a) fish’ (NSJa. S6:11)
b. ūntxa-nen kōma-nk nōnē i zūl-es. forget-3>3SG.OBJ me-DAT fish INTERJ give-INF
 ‘He forgot to give me (a) fish’ (NSJa. S6:11)

Two important properties hold of LDA in Itelmen in so far as we can tell from the data available. First, LDA is only possible into a non-finite complement. Second, it is further restricted to verbs which are cross-linguistically typical members of the class of restructuring predicates, such as modals, aspectual verbs (begin, stop), causatives (which are affixal) and certain lexical verbs such as try, want, and forget. The pair in (14) illustrates this partly; the verb –n(e)txa-‘forget’ may take either a finite or a non-finite complement, as in English (and Russian, the language used for elicitation). In response to (Russian) prompts with a non-finite complement as in (14)a, examples were given with LDA; in response to prompts with a finite complement, the matrix verb was given in its intransitive form, without LDA.

(14) a. ‘He forgot to meet me.’
 na ūntxa- ūm=nū kma jeōna-s forget-1SG.OBJ=3.CL me meet-INF (NSJa. S6:8)
b. ‘He forgot that he met me.’
 na k-netxa-knen kma k’-jeōna-an forget-TRANS PRT me PRT-meet-TRANS (NSJa. S6:9)

3.2. Aside: LDA is LDA

Given that Itelmen allows agreement with a dative (or other oblique), it is important at this point to establish that the putative LDA cases do in fact involve agreement with an object in the embedded clause, as opposed to being something like the English ‘about’ construction illustrated in (15), where one could imagine that agreement is with a (possibly null) adjunct in the higher clause, coindexed with an element in the lower clause.

(15) John knew about/of me only that he should meet me at 8:00.

There are three arguments that the Itelmen construction does involve LDA. The first argument concerns the distribution of oblique agreement in Itelmen with intransitive predicates. While it is possible for an intransitive predicate to agree with an oblique element (including the possessor of the subject or a silent benefactive) as in (16)a, such

8 Clearly, this argument would be strengthened if we could demonstrate directly that LDA across a finite clause boundary is strictly impossible, rather than inferring this from the fact that such agreement is unattested in our corpus, while LDA into a non-finite complement is well attested. To establish the stronger claim will require additional field work.
agreement is only possible with third person arguments; (16)b demonstrates that with a second person argument, only intransitive agreement is acceptable.

(16) a. ťiin ňňňke-cı ččč-z-in / ččč-s-kipin
 their child-DIM cry-PRES-3SG.SBJ cry-PRES-3PL.OBL
 ‘Their child is crying’

b. ťžiin ňňňke-cı ččč-z-in / *ččč-s-sxin
 your(pl) child-DIM cry-PRES-3SG.SBJ cry-PRES-2PL
 ‘Your(pl) child is crying’

Since LDA allows all persons to trigger agreement (note first person agreement in (12)b and (13)a), this demonstrates that LDA patterns with true object agreement and differs from agreement with an adjunct in the matrix clause.

A second argument that LDA is really LDA and not an Itelmen analogue of (15) concerns the shape of the agreement morphology. Like Romance clitics, Itelmen object agreement is morphologically distinct in the third person (though not in first and second) depending on whether the agreement cross-references a direct object or oblique (dative). The morphological form of the agreement suffix on the matrix verb in (13)b is unambiguously that of agreement with a direct object, not with an oblique. Likewise, the quantified object in (1)a is clearly in the direct (unmarked) case, reserved for subject and direct object. Thus, the expression mǐoknǒn ‘all windows’ cannot be an adjunct in the matrix clause, as it has the wrong morphological form for an adjunct expression.

Finally, we noted above that Itelmen object agreement is only possible out of non-finite complements. This contrasts with the English case, which, if anything, appears more readily accepted when the complement is a finite clause than when the complement is non-finite. Compare (15) to the far less acceptable: ?? John knew about/of me only to meet me at two. On the available evidence, then, Itelmen LDA patterns more closely with the cross-clausal dependencies in restructuring contexts than it does with the English about construction.

3.3. Testing the Agreement-Scope Correlation

Assuming that the generalizations stated in section 3.1 are correct, we tentatively conclude at this point that LDA in Itelmen is an instance of restructuring. LDA examples such as (14)a (and (12)a and (13)) must thus have the structure in (9)a—the lexical restructuring verb –n(e)txa-‘forget’ takes a VP complement that lacks an accusative case/object agreement licenser for the embedded object kma ‘me’.; Since the infinitival VP is an induced phase, AGREE with the matrix vP is not possible without movement. The object therefore undergoes A-movement to the matrix clause (Spec,vP) where it agrees with v, the relationship being manifest as morphological object agreement.

This establishes that Itelmen LDA has the right properties to test the predictions of section 2. The key prediction is the agreement-scope correlation stated in (17), parallel to the German anti-reconstruction effect in restructuring constructions.
When the embedded object agrees with the matrix v (and gets case in the matrix predicate), it has to be interpreted in the matrix predicate; it cannot take embedded scope.

To test this prediction in Itelmen, we suggested contexts in which, for example, I was going out of my apartment and expected that it might rain. Therefore, I was supposed to close all the windows. In such a context, an example like (1)a, repeated here as (18)a, was judged acceptable, but with the additional comment from the consultant that as a result, all windows remained open. Example (18)b was presented in a similar context, and after judging the sentence acceptable, the consultants were asked whether this could be uttered felicitously if some windows had been closed, and only some forgotten. The sentence was clearly judged inappropriate for that scenario.

(18) a. t'¤ntxakìn [mi¬ okno¬n sop¬es] 1SG-forget-3PL.OBJ [all window-PL close-INF]
 ‘I forgot to close all the windows’ (S6:6-7)

 b. na k'¤ntxakìn=ni¬n mi¬ okno¬n sop¬es
 he PART-forget-TRANS.PL=CLITIC all window-PL close-INF
 ‘He forgot to close all the windows’ (S6:2)

As one independent control, we established that the universal quantifier $mi¬$ ‘all’ does enter into scope interactions and is not for example restricted to taking widest scope (however that might be achieved). The sentence pair in (19) establishes this. The continuation in (19)b was offered by the consultant as a clarification of the meaning of (19)a. Note that the clarification would have been a contradiction if the universal did not scope under negation in (19)a.

(19) a. qalâm mi¬ňnì¬nì¬n k nõnì¬nì¬n zõl¬aq i¬he¬n...
 NEG all-AUGM-PL.DAT fish-PL give-NEG AUX-3>3PL
 ‘He didn’t give fish to everyone…’

 b. qolânk i k'¤ntxa¬n zõl¬es
 other-PL.DAT INTERJ PART-forget-TRANS give-INF
 ‘To other people, he forgot to give (fish).’ (S6:13)
 i.e.: ‘He didn’t give fish to everyone, (to some people, he gave fish) but to others, he forgot.’

It should be pointed out at this point that the Itelmen results should be considered preliminary. Testing these with more speakers may, sadly, prove impossible (though the test should be replicable in other languages with restructuring LDA). Results with the LDA verb -itu- ‘be.unable’ (e.g., Pasha can’t pick up all of his toys) proved inconclusive for irrelevant reasons (such as confusions regarding distributive and collective readings). What is fair to say is that all of the clear judgments we were able to obtain were consistently for wide scope of the universal over the matrix verb in LDA contexts. Our optimism that this is indeed systematic is supported by the fact that this interpretation
involves inverse scope with respect to both the underlying hierarchical relation and the surface word order. Moreover, no readily apparent pragmatic influences would seem to favour this reading over the surface scope ordering, corresponding to the more natural reading of the English paraphrase. An alternative account would have to explain this in terms of obligatory QR over ‘forget’ (but not over negation) or some such, which we consider to be implausible.

3.4. Section summary

Our account of long A-movement in restructuring in German (and Japanese), summarized in section 2, holds that the relationship between the embedded object and the matrix predicate must be established by movement, as the lower VP constitutes a phase for AGREE. As this movement crosses a phase-boundary, the LF-phasemate condition on AGREE blocks reconstruction. Our account forces us to make a specific and surprising prediction about long-distance object agreement in languages that have it, namely, the agreement-scope correlation presented in (17). The data from Itelmen had the clear potential to refute this prediction—it would be surprising to find that readings corresponding to surface scope would be consistently unavailable in this very particular construction, the LDA configuration. Nevertheless, this is what we have found. Despite the preliminary nature of the evidence, we are optimistic that this prediction will be borne out further, especially in other languages.

4. LDA at the Edge

Thus far, we have examined the consequences of two assumptions embedded within the phase-theoretic approach to locality. The first assumption is that the (verbal) complement of a lexical verb always constitutes a phase for AGREE (see (10)). The consequence of this is that VP (or InfP) constitutes a phase when it combines with a lexical restructuring verb, but not otherwise. The second assumption is that AGREE obeys an LF-phasemate condition. The consequence of this premise is that cross-phasal case and agreement dependencies must involve movement; this was shown to be detectable in scope facts, in particular the anti-reconstruction effect manifest in German, Japanese and Itelmen. To this point, we have omitted discussion of an aspect of phase-theory suggested by Chomsky (2000), specifically, the proposal that the Edge of a phase (i.e., the highest head in a phase and its specifiers) is accessible to or constitutes a part of the next higher phase.

If we are correct in our proposal about induced phases, the Edge condition predicts that the specifier of the complement of a lexical verb should be accessible for matrix object agreement.\(^9\) The relevant configuration is shown in (20).

We predict then that a matrix verb should be able to show object agreement with the topmost specifier of its complement, without forcing movement (overt or covert), and hence without triggering the agreement-scope correlation.

\(^9\) As it stands, this specifier should only be accessible to agreement in the next phase up. Thus, when the matrix predicate is transitive (containing a vP), the lower specifier should be accessible only for object agreement and not for subject agreement.
4.1. **Tsez**

This is a particularly interesting prediction since it looks to be immediately falsified by examples such as the Tsez LDA construction presented in example (1)b, repeated here. In this example, the matrix verb agrees with the absolutive argument *magalu* ‘bread’ which is not in any obvious way at the periphery of the embedded clause.

\[
\begin{align*}
\text{enir} & & [\text{uz} & \text{ma} & \text{al} & \text{u} & \text{ba} & \text{ru}] & \text{b-iyxo} \\
\text{mother} & & [\text{boy} & \text{bread.III.ABS} & \text{ate} & \text{III-know}] \\
\text{P&P:584}
\end{align*}
\]

‘The mother knows [(that) the boy ate the bread.]’

Despite the surface word order, P&P argue carefully that the agreeing object in the embedded clause must occupy a high specifier position at LF, in particular, that the DP carries an obligatory topic interpretation which they take to involve (covert) movement to the specifier of a high functional projection, TopicP. In our account, nothing forces overt movement to the edge, since, as argued above, we consider AGREE to be an LF-condition.

P&P present a series of arguments to show that the agreeing argument is obligatorily associated with a Topic interpretation, and that it cannot raise into the matrix clause at LF (indeed, they argue that cross-clausal movement whether overt or covert is blocked in Tsez). In particular, the agreeing object in Tsez cannot enter into scope interactions with the matrix predicate, as (22) indicates.

\[
\begin{align*}
\text{sis} & & [\text{uc} & \text{ele} & \text{ler} & \text{baw} & \text{ik} & \text{ixosil}] & \text{O-iyxo} \\
\text{one teacher} & & \text{every boy (I)} & \text{goes I-know} \\
\text{surface:} & & \text{E} & \text{I-know} \\
\text{*inverse:} & & \text{E} & \text{I-know} \\
\end{align*}
\]

Strikingly similar facts obtain in Algonquian languages, see in particular Bruening (2001) on Passamaquoddy and Branigan and MacKenzie (2002) on Innu-aimûn. We will present the Tsez facts as representative of these languages (but see section 5 for some qualifications).
The specific structure that P&P propose (p.585) for Tsez is given in (23).

\[(23) \quad [CP \text{ specifier } [C^* \text{ Spec } [TopP \text{ specifier } [Top^* \text{ Top } [IP \text{ S O V]]]]]]] \]

It should not be immediately apparent that this solves the problem at hand. Recall that our prediction is that only the Edge of a phase will be accessible to agreement in the next higher phase. Spec,TopicP may be high, but it is only the specifier of the highest projection that should be visible. Given our theory of induced phases, then, movement to Spec,TopicP in (23) should allow an embedded object to undergo LDA only when the CP projection is absent. Thus, we must claim that (21) has the truncated structure in (24)b.

\[(24) \]

\[\begin{align*}
&a. \quad \text{Agreement with SpecCP/*SpecTopP} \\
&b. \quad \text{Agreement with SpecTopP}
\end{align*} \]

Put differently, our theory predicts that the CP projection (or material in it) should block LDA with an embedded topic (see (24)a). This is precisely what P&P argue to be one condition on LDA in Tsez. Two configurations illustrate this effect.

First, if there is a wh-word in the embedded clause, CP will be projected and Spec,TopP will no longer be visible to the matrix v, as illustrated in (25)a; agreement in this example is with the embedded clause as a clausal object. Second, if there is an overt complementizer, even in the absence of material in Spec,CP, CP must be projected and hence will block LDA (see (25)b; see P&P for arguments that \(r/*b \)-iyx is a complementizer).

\[(25) \]

\[\begin{align*}
&a. \quad \text{enir} \quad [\text{na} \text{c’ohora} \text{ mixir} \quad \text{bok’a} \text{ru} \text{ r/*b-iyxo} \quad \text{mother} \quad \text{where} \quad \text{thief} \quad \text{money.III.ABS} \quad \text{stole} \quad \text{IV} \quad \text{IV/*III-know} \quad \text{‘The mother knows where the thief stole the money’} \quad \text{P&P p.364} \\
&b. \quad \text{*enir} \quad [\text{uz} \text{ma} \text{alu} \quad \text{ba’si} \text{In} \quad \text{b-iyxo} \quad \text{mother} \quad \text{boy} \quad \text{bread.III.ABS} \quad \text{ate-COMP} \quad \text{III-know} \quad \text{‘The mother knows (that) the boy ate the bread.’} \quad \text{p.635}
\end{align*} \]

Finally, our analysis leads us to expect that though CP should block LDA with a topic in

10 Bruening (2001) has a different structure for Passamaquoddy, but shares with P&P the view that the agreeing elements must be at the Edge of the embedded clause, for him, adjoined to CP, hence at LF higher than wh-phrases.
Spec, TopP, an element in Spec, CP should be eligible for LDA, subject to independent morphological constraints on agreement in Tsez (such as the restriction to absolutive NPs). Again, this is something which P&P argue holds in Tsez, as the following example demonstrates (see their fn. 20 for qualifications).

(26) enir [sũbi yaũ’irũũ] y-iyxaũ
mother [wh. II.ABS went].IV II-know
‘The mother doesn’t know [who left.]’ (of women) (P&P p.368)

In sum, the proposals we have developed on the basis of German, Japanese and Itelmen, taken together with Chomsky’s Edge suggestion, lead us to expect that LDA should be possible between a verb and the highest specifier of its complement, CP when the complement is a full clause, or whatever projection constitutes the top projection of the embedded complement when the CP projection is absent. Importantly, such examples should be found even where movement into the higher clause is prohibited, and are therefore not expected to show the obligatory wide scope effect seen in German, Japanese and Itelmen. These expectations dovetail quite neatly with recent analyses of Tsez and of Algonquian languages in P&P, Bruening (2001) and Branigan and MacKenzie (2002).

4.2. Differences between Itelmen and Tsez

At this point, we must go back to the German and Itelmen cases and check to see that the Edge condition, which allows us to extend the analysis to Tsez and Algonquian, does not undermine our previous analysis. Common elements of the analysis of Itelmen and Tsez are given in (27).

(27) a. Agreement is with an (LF) phasemate.
 b. Movement may feed agreement, but can’t reconstruct.
 (hence phases for agreement ≠ barriers for movement)
 c. Complement of lexical V is a phase, even when truncated (by (10))

The differences between the languages may lie in whether or not LDA is connected to what we may call the primary licensing of the object.11 In Itelmen, LDA is restricted to restructuring configurations. The embedded object occurs in the configuration in (9)a, i.e., it is contained in (and not at the edge of) a VP (or slightly larger InfP) complement to a lexical verb. This complement lacks an (abstract) accusative case/object agreement licenser and the phase boundary prevents an AGREE relation with the matrix case-assigner (v) in situ. On the basis of German, we know that successive cyclic movement to the Edge of the phase is impossible in this configuration, rather A-movement occurs in a single step to the specifier of the appropriate functional head for feature checking. In Wurmbrand, this volume (section 3), it is suggested that A-movement is only licensed by immediate feature checking (or as put there, if movement feeds AGREE at that point). Since successive-cyclic movement to an intermediate specifier will not result in feature checking at that point in the derivation, such movement is impossible.12 The underlying

11 Our thanks to Benjamin Bruening for suggesting licensing as the key difference.
12 As Wurmbrand notes, we must restrict this proposal to A-movement and have nothing to say
object must move to the specifier of the matrix vP, a position from which it cannot reconstruct, and the scope effects obtain. Thus, A-movement, on our analysis, is obligatory—the appearance of optionality (as in (12)b-c) arises since, as in German and Japanese, lexical restructuring verbs may also combine with non-restructuring infinitives, in which case there is a case-assigner in the embedded clause and hence movement is not required to license case/agreement (see the discussion under (5)).

LDA in Tsez (and Passamaquoddy) is not limited to restructuring verbs, nor is it limited to non-finite complements (the verb know in the sense of knowing a proposition/fact is not a restructuring verb, and the complements in the Tsez examples are clearly finite). More to the point, the embedded object is licensed in the embedded clause, receiving case and checking agreement in that clause. Since there is no motivation from licensing for movement, we expect that movement will happen only where motivated on independent grounds, such as wh-movement to Spec,CP and topic movement to Spec,TopP. LDA is, as we expect, only possible when such independent operations bring a morphologically appropriate (absolutive) DP into the range of a potentially agreeing head, where the range of a head is its phase, including the Edge of the next phase down. Even in Tsez, then, LDA is local, just as P&P (and Bruening) suggested. We do not know why the languages differ in this way (Tsez lacking restructuring-type LDA, Itelmen lacking—so far as we know—LDA with the Edge of a finite complement); indeed, we do not yet understand the cross-linguistic distribution of restructuring effects. However, once this prior difference is recognized, the properties of LDA in the two types of languages fall into place, clustering in very much the manner predicted by the theoretical tools which we have made use of.

5. Directions for future research

Before concluding, there are two potential complications that we are aware of, which we will mention here. Limitations do not permit us to address these in the detail they deserve, but we will speculate on the direction we hope to pursue in resolving them.

5.1. Reconstruction in Passamaquoddy

In Tsez and Pasamaquoddy (and Innu-aimun) the object which triggers agreement in the higher predicate must occupy the specifier of the highest projection of the complement clause. We have suggested that agreement is with an LF-phasemate—if the topic status is read off the LF configuration, then the obligatory topic interpretation of an LDA object in these languages can be assimilated to the anti-reconstruction effect. Complete reconstruction of the object to a lower position in the embedded clause would render it inaccessible to the matrix v. Some part of the DP, with features accessible to agreement, must remain in the high position at LF. Nevertheless, unlike German, Japanese and Itelmen, the LDA objects in Passamaquoddy at least may undergo reconstruction for binding purposes (and possibly scope) into a lower position. The examples in (28) display LDA between the matrix verb and the DP nisuwihtic-il ‘his spouse’ in the lower clause. Importantly, this DP contains a variable which may be bound by the quantifier in the

about wh-movement at this point.
lower subject position, indicating that for the purposes of binding theory, the object is not in the highest specifier of the embedded clause.

(28) a. N-kosiciy-a eli psi=te wen koseloma-t nisuwihtic-il.
 1-know.TA-DIR C* all=EMPH someone love-3CONJ spouse-OBV
b. N-kosiciy-a nisuwihtic-il eli psi=te wen koseloma-t.
 1-know.TA-DIR spouse-OBV C* all=EMPH someone love-3CONJ

both: ‘I know that everyone₁ loves his₁ spouse’ (Bruening 2001, p264)

Examples of this sort are relevant to our claim in (27)a that AGREE is sensitive to an LF-phasemate condition. That assumption explains why reconstruction is impossible in the German, Japanese and Itelmen cases. Bruening argues instead on the basis of examples like (28) that AGREE obeys an ‘anywhere’ phasemate condition. Movement to the left periphery is required at some point in the derivation in order for LDA to obtain, but that movement may subsequently reconstruct. However, Bruening’s assumption is too weak to block reconstruction in the cases we have examined. There are at least two ways we see to resolve this tension, and we take no stand at this point on which will prove correct. On the one hand, one could seek to assimilate this to the primary versus parasitic licensing distinction that we have already appealed to in section 4.2; perhaps only licensing relations need to be respected at LF, hence AGREE as part of licensing obeys an LF-phasemate condition, while parasitic AGREE respects the same phase boundaries, yet may be satisfied at any point in the derivation. On the other hand, one could attempt to reduce this instead to the A versus A’ distinction in the movement types involved. Basic examples of reconstruction in A’-movement show that, if topic(-focus) structure is read off LF positions, a DP may be interpreted in one position as a topic and in a lower position for binding-theoretic purposes. Within the copy theory of movement, this is occasionally referred to as feature dispersion.

(29) Herself₁, Sue₁ likes t.

For our proposals, it would be sufficient to maintain that LF-coherence holds across scope-binding and case positions (if an NP moves across a phase for case-licensing reasons, it cannot reconstruct), while A’-movement such as topicalization may reconstruct, so long as sufficient features remain in the high position so as to be visible for agreement. The Hindi facts discussed below point to the same conclusion.

5.2. LDA in Hindi-Urdu

In recent work, Bhatt (2002) examines a LDA construction in Hindi. The salient properties of Hindi LDA place it squarely within the realm of potentially relevant constructions; in particular, this LDA construction is restricted to non-finite complements of restructuring verbs. Since LDA is restricted in this way, the agreement-scope correlation should apply in Hindi as well. As Bhatt presents the facts, they are the following: wide-scope of the object over the matrix predicate is blocked when there is no LDA, and LDA makes this scope interpretation available and “even preferred” (p.22, see also Mahajan 1989 (46)). Nevertheless, Bhatt claims that the wide scope reading is not
LDA, restructuring and anti-reconstruction

obligatory—in our terms, reconstruction is possible in these configurations (see also Nomura to appear on this possibility for the Japanese example in (3)). Bhatt’s own analysis suggests an assimilation of the Hindi facts to the Tsez facts discussed in section 4, rather than to Itelmen. In Hindi, LDA is only possible when the infinitive also agrees with the embedded object. Thus, the embedded object need only move to the specifier of the infinitival projection, rather than all the way into the matrix clause. In this position it will be accessible to object agreement from the matrix verb, but will not necessarily scope over that verb (though nothing prevents further QR). This is possible in Hindi (but impossible in German, Japanese, and Itelmen) precisely because it is only in Hindi that the embedded object can enter an agreement relation with the infinitive, a distinction evident in the overt morphology. If this direction proves reasonable, then the Hindi facts are consistent with our analysis.

6. Conclusion

LDA constructions challenge conceptions of agreement as a local, e.g., phase-bounded, operation. In this paper, we have argued that a curious anti-reconstruction effect in Itelmen LDA constructions leads to the conclusion that LDA is in fact fed by movement. This conclusion dovetails with other analyses of LDA in Tsez and Passamaquoddy, though Itelmen differs from those languages in that it is not sufficient for the object to move to the Edge of the lower clause in Itelmen, it must instead raise into the higher clause. We have argued that this is because the Itelmen construction is a case of restructuring, and thus that it should be assimilated to other cases of anti-reconstruction in restructuring configurations in German and Japanese. In doing so, we provided empirical support for the idea that morphological object agreement reflects the same abstract licensing relationship as accusative case, just as subject agreement is held to be the reflex of nominative case. Technical innovations suggested in this paper are: (i) the operations MOVE and AGREE are independent operations (not parasitic upon each other), (ii) in addition to inherent phases (vP, CP), complements to lexical verbs are induced phases, (iii) locality domains expressed by phases are not absolute, specifically, A-movement may cross boundaries which are impenetrable for AGREE, and (iv) AGREE is phase-based and must be with an LF-phasemate (A-reconstruction is phase-bound).

References

